A generalized "max-min" sample for reliability assessment with dependent variables

Sylvain Lacaze, Samy Missoum

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper introduces a novel approach for reliability assessment with dependent variables. In this work, the boundary of the failure domain, for a computational problem with expensive function evaluations, is approximated using a Support Vector Machine and an adaptive sampling scheme. The approximation is sequentially refined using a new adaptive sampling scheme referred to as generalized "max-min". This technique efficiently targets high probability density regions of the random space. This is achieved by modifying an adaptive sampling scheme originally tailored for deterministic spaces (Explicit Space Design Decomposition). In particular, the approach can handle any joint probability density function, even if the variables are dependent. In the latter case, the joint distribution might be obtained from copula. In addition, uncertainty on the probability of failure estimate are estimated using bootstrapping. A bootstrapped coefficient of variation of the probability of failure is used as an estimate of the true error to determine convergence. The proposed method is then applied to analytical examples and a beam bending reliability assessment using copulas.

Original languageEnglish (US)
Title of host publication34th Computers and Information in Engineering Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846285
DOIs
StatePublished - 2014
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: Aug 17 2014Aug 20 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume1A

Other

OtherASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Country/TerritoryUnited States
CityBuffalo
Period8/17/148/20/14

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'A generalized "max-min" sample for reliability assessment with dependent variables'. Together they form a unique fingerprint.

Cite this