Abstract
BACKGROUND: Because of the relative lack of understanding of the mechanisms that drive skeletal pain, the purpose of this study was to adapt a previously validated closed femur fracture model to quantitatively evaluate skeletal pain in female and male rats. METHODS: Three-month-old female and male Sprague-Dawley rats were anesthetized, and a stainless steel pin was inserted into the intramedullary space of the left femur. Three weeks later, the rats were reanesthetized, and left femoral diaphyses were fractured using a standardized impactor device. At 1-21 days after fracture, skeletal pain was measured by quantitatively assessing spontaneous guarding, spontaneous flinching, and weight bearing of the fractured hind limb. RESULTS: Females and males showed highly robust pain behaviors that were maximal at day 1 after fracture and returned gradually to normal nonfractured levels at days 14-21 after fracture. The magnitude of fracture pain was not significantly different at most time points between female and male rats. In both females and males, the pain-related behaviors were attenuated by subcutaneous morphine in a dose-dependent manner. CONCLUSIONS: This model may help in developing a mechanism-based understanding of the factors that generate and maintain fracture pain in both females and males and in translating these findings into new therapies for treating fracture pain.
Original language | English (US) |
---|---|
Pages (from-to) | 473-483 |
Number of pages | 11 |
Journal | Anesthesiology |
Volume | 108 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2008 |
ASJC Scopus subject areas
- Anesthesiology and Pain Medicine