TY - JOUR
T1 - A forced ventilation micropropagation system for photoautotrophic production of sweetpotato plug plantlets in a scaled-up culture vessel
T2 - II. Carbohydrate status
AU - Wilson, S. B.
AU - Heo, J.
AU - Kubota, C.
AU - Kozai, T.
PY - 2001
Y1 - 2001
N2 - Sweetpotato [Ipomoea batatas (L.) Lam., 'Beniazuma'] plantlets were grown photoautotrophically (without sugar) for 12 days in an improved forced ventilation system designed with air distribution pipes for uniform spatial distributions of carbon dioxide (CO2) concentration. Enriched CO2 conditions and photosynthetic photon flux (PPF) were provided at 1500 μmol·mol-1 and 150 μmol·m-2·s-1, respectively. The forced (F) ventilation treatments were designated high (FH), medium (FM), and low (FL), corresponding to ventilation rates of 23 mL·s-1 (1.40 inch3/s), 17 mL·s-1 (1.04 inch3/s), and 10 mL·s-1 (0.61 inch3/s), respectively, on day 12. The natural (N) ventilation treatment was extremely low (NE) at 0.4 mL·s-1 (0.02 inch3/s), relative to the forced ventilation treatments. Total soluble sugar (TSS) and starch content were determined on day 12. Total soluble sugars (sucrose, glucose, fructose) of FH plantlets were lowest in leaf tissue and highest in stem tissue as compared to other ventilation treatments. Starch concentration was higher in leaf tissue of FH or FM plantlets as compared to that of FL or NE plantlets. Plantlets subjected to FH or FM treatments exhibited significantly higher net photosynthetic rates (NPR) than those of the other treatments; and on day 12, NPR was almost five times higher in the FH or FM treatment than the FL or NE treatments. Carbohydrate concentration of plantlets was also influenced by the position of the plantlets in the vessel. Within the forced ventilation vessels, leaf TSS of FH and FM plantlets was similar regardless of whether plantlets were located near the inlet or outlet of CO2 enriched air. However, under FH or FM conditions, leaf starch concentration was higher in plantlets located closest to the CO2 inlet as compared to the outlet.
AB - Sweetpotato [Ipomoea batatas (L.) Lam., 'Beniazuma'] plantlets were grown photoautotrophically (without sugar) for 12 days in an improved forced ventilation system designed with air distribution pipes for uniform spatial distributions of carbon dioxide (CO2) concentration. Enriched CO2 conditions and photosynthetic photon flux (PPF) were provided at 1500 μmol·mol-1 and 150 μmol·m-2·s-1, respectively. The forced (F) ventilation treatments were designated high (FH), medium (FM), and low (FL), corresponding to ventilation rates of 23 mL·s-1 (1.40 inch3/s), 17 mL·s-1 (1.04 inch3/s), and 10 mL·s-1 (0.61 inch3/s), respectively, on day 12. The natural (N) ventilation treatment was extremely low (NE) at 0.4 mL·s-1 (0.02 inch3/s), relative to the forced ventilation treatments. Total soluble sugar (TSS) and starch content were determined on day 12. Total soluble sugars (sucrose, glucose, fructose) of FH plantlets were lowest in leaf tissue and highest in stem tissue as compared to other ventilation treatments. Starch concentration was higher in leaf tissue of FH or FM plantlets as compared to that of FL or NE plantlets. Plantlets subjected to FH or FM treatments exhibited significantly higher net photosynthetic rates (NPR) than those of the other treatments; and on day 12, NPR was almost five times higher in the FH or FM treatment than the FL or NE treatments. Carbohydrate concentration of plantlets was also influenced by the position of the plantlets in the vessel. Within the forced ventilation vessels, leaf TSS of FH and FM plantlets was similar regardless of whether plantlets were located near the inlet or outlet of CO2 enriched air. However, under FH or FM conditions, leaf starch concentration was higher in plantlets located closest to the CO2 inlet as compared to the outlet.
KW - Air distribution system
KW - Ipomoea batatas
KW - Net photosynthetic rate
KW - Plant tissue culture
KW - Soluble sugars
KW - Starch
UR - http://www.scopus.com/inward/record.url?scp=0035135070&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035135070&partnerID=8YFLogxK
U2 - 10.21273/horttech.11.1.95
DO - 10.21273/horttech.11.1.95
M3 - Article
AN - SCOPUS:0035135070
SN - 1063-0198
VL - 11
SP - 95
EP - 99
JO - HortTechnology
JF - HortTechnology
IS - 1
ER -