TY - JOUR
T1 - A disk-driven resonance as the origin of high inclinations of close-in planets
AU - Petrovich, Cristobal
AU - Muñoz, Diego J.
AU - Kratter, Kaitlin M.
AU - Malhotra, Renu
N1 - Publisher Copyright:
© 2020. The American Astronomical Society. All rights reserved.
PY - 2020/10/10
Y1 - 2020/10/10
N2 - The recent characterization of transiting close-in planets has revealed an intriguing population of sub-Neptunes with highly tilted and even polar orbits relative to their host star’s equator. Any viable theory for the origin of these close-in, polar planets must explain (1) the observed stellar obliquities, (2) the substantial eccentricities, and (3) the existence of Jovian companions with large mutual inclinations. In this work, we propose a theoretical model that satisfies these requirements without invoking tidal dissipation or large primordial inclinations. Instead, tilting is facilitated by the protoplanetary disk dispersal during the late stage of planet formation, initiating a process of resonance sweeping and parametric instability. This mechanism consists of two steps. First, a nodal secular resonance excites the inclination to large values; then, once the inclination reaches a critical value, a linear eccentric instability is triggered, which detunes the resonance and ends inclination growth. The critical inclination is pushed to high values by general relativistic precession, making polar orbits an inherently post-Newtonian outcome. Our model predicts that polar, close-in sub-Neptunes coexist with cold Jupiters in low stellar obliquity orbits.
AB - The recent characterization of transiting close-in planets has revealed an intriguing population of sub-Neptunes with highly tilted and even polar orbits relative to their host star’s equator. Any viable theory for the origin of these close-in, polar planets must explain (1) the observed stellar obliquities, (2) the substantial eccentricities, and (3) the existence of Jovian companions with large mutual inclinations. In this work, we propose a theoretical model that satisfies these requirements without invoking tidal dissipation or large primordial inclinations. Instead, tilting is facilitated by the protoplanetary disk dispersal during the late stage of planet formation, initiating a process of resonance sweeping and parametric instability. This mechanism consists of two steps. First, a nodal secular resonance excites the inclination to large values; then, once the inclination reaches a critical value, a linear eccentric instability is triggered, which detunes the resonance and ends inclination growth. The critical inclination is pushed to high values by general relativistic precession, making polar orbits an inherently post-Newtonian outcome. Our model predicts that polar, close-in sub-Neptunes coexist with cold Jupiters in low stellar obliquity orbits.
UR - http://www.scopus.com/inward/record.url?scp=85093077575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85093077575&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/abb952
DO - 10.3847/2041-8213/abb952
M3 - Article
AN - SCOPUS:85093077575
SN - 2041-8205
VL - 902
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1
M1 - L5
ER -