A Diffuse Metal-poor Component of the Sagittarius Stream Revealed by the H3 Survey

Benjamin D. Johnson, Charlie Conroy, Rohan P. Naidu, Ana Bonaca, Dennis Zaritsky, Yuan Sen Ting, Phillip A. Cargile, Jiwon Jesse Han, Joshua S. Speagle

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

The tidal disruption of the Sagittarius dwarf galaxy has generated a spectacular stream of stars wrapping around the entire Galaxy. We use data from Gaia and the H3 Stellar Spectroscopic Survey to identify 823 high-quality Sagittarius members based on their angular momenta. The H3 Survey is largely unbiased in metallicity, and so our sample of Sagittarius members is similarly unbiased. Stream stars span a wide range in [Fe/H] from -0.2 to ≈-3.0, with a mean overall metallicity of . We identify a strong metallicity dependence to the kinematics of the stream members. At [Fe/H] > -0.8 nearly all members belong to the well-known cold (σν < 20 km s-1) leading and trailing arms. At intermediate metallicities (-1.9 < [Fe/H] < -0.8) a significant population (24%) emerges of stars that are kinematically offset from the cold arms. These stars also appear to have hotter kinematics. At the lowest metallicities ([Fe/H] ≲ -2), the majority of stars (69%) belong to this kinematically offset diffuse population. Comparison to simulations suggests that the diffuse component was stripped from the Sagittarius progenitor at earlier epochs, and therefore resided at larger radius on average than the colder metal-rich component. We speculate that this kinematically diffuse, low-metallicity population is the stellar halo of the Sagittarius progenitor system.

Original languageEnglish (US)
Article number103
JournalAstrophysical Journal
Volume900
Issue number2
DOIs
StatePublished - Sep 10 2020

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'A Diffuse Metal-poor Component of the Sagittarius Stream Revealed by the H3 Survey'. Together they form a unique fingerprint.

Cite this