A data-driven approach to estimating dockless electric scooter service areas

Abolfazl Karimpour, Aryan Hosseinzadeh, Robert Kluger

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

With the surging usage of e-scooters worldwide, there is a growing interest in understanding different aspects of e-scooters trips and their impact on urban mobility. Further, the emergence of this new mode of transportation has led to questions regarding the spatial accessibility of e-scooters and understanding how the built environment and urbanism characteristics affect riders' abilities to reach certain destinations. In this study, initially, a data-driven approach was proposed to construct the service areas for dockless e-scooter using origin-destination trip data. Service areas are defined as spatial areas that riders are regularly able to reach via an e-scooter. E-scooter service areas were constructed for traffic analysis zones in Louisville, KY, using agglomerative hierarchical clustering and convex hull algorithms. Then, the relationship between various built environments and urbanism characteristics and the e-scooter service areas was examined using principal component analysis and random forest regression. The results showed that percent of residential properties, length of the block, Walk Score®, Transit Score ®, and Dining and Drinking Score contributed most to the size of the e-scooter service area. The findings of this research offer a transferable method to estimate e-scooter service areas to quantify access to goods and services. Further, the study discusses how the built environment and urbanism characteristics might affect the size of the service areas.

Original languageEnglish (US)
Article number103579
JournalJournal of Transport Geography
Volume109
DOIs
StatePublished - May 2023
Externally publishedYes

Keywords

  • Agglomerative hierarchical clustering algorithm
  • Convex hull algorithm
  • Dockless electric scooters
  • E-scooter service area
  • OD trip data

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Transportation
  • General Environmental Science

Fingerprint

Dive into the research topics of 'A data-driven approach to estimating dockless electric scooter service areas'. Together they form a unique fingerprint.

Cite this