A cubesat centrifuge for long duration milligravity research

Erik Asphaug, Jekan Thangavelautham, Andrew Klesh, Aman Chandra, Ravi Nallapu, Laksh Raura, Mercedes Herreras-Martinez, Stephen Schwartz

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

We advocate a low-cost strategy for long-duration research into the ‘milligravity’ environment of asteroids, comets and small moons, where surface gravity is a vector field typically less than 1/1000 the gravity of Earth. Unlike the microgravity environment of space, there is a directionality that gives rise, over time, to strangely familiar geologic textures and landforms. In addition to advancing planetary science, and furthering technologies for hazardous asteroid mitigation and in situ resource utilization, simplified access to long-duration milligravity offers significant potential for advancing human spaceflight, biomedicine and manufacturing. We show that a commodity 3U (10 × 10 × 34 cm3) cubesat containing a laboratory of loose materials can be spun to 1 r.p.m. = 2π/60 s−1 on its long axis, creating a centrifugal force equivalent to the surface gravity of a kilometer-sized asteroid. We describe the first flight demonstration, where small meteorite fragments will pile up to create a patch of real regolith under realistic asteroid conditions, paving the way for subsequent missions where landing and mobility technology can be flight-proven in the operational environment, in low-Earth orbit. The 3U design can be adapted for use onboard the International Space Station to allow for variable gravity experiments under ambient temperature and pressure for a broader range of experiments.

Original languageEnglish (US)
Article number16
Journalnpj Microgravity
Volume3
Issue number1
DOIs
StatePublished - Dec 1 2017
Externally publishedYes

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Materials Science (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Agricultural and Biological Sciences (miscellaneous)
  • Physics and Astronomy (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'A cubesat centrifuge for long duration milligravity research'. Together they form a unique fingerprint.

Cite this