TY - JOUR
T1 - A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth
T2 - A case study in the Ambos Nogales watershed
AU - Norman, Laura M.
AU - Guertin, D. Phillip
AU - Feller, Mark
PY - 2008/7/1
Y1 - 2008/7/1
N2 - The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning "both Nogaleses," is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be accomplished in a virtual environment.
AB - The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning "both Nogaleses," is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be accomplished in a virtual environment.
KW - Alternative scenarios
KW - Urban growth
KW - Watershed modeling
UR - http://www.scopus.com/inward/record.url?scp=48749093189&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48749093189&partnerID=8YFLogxK
U2 - 10.2747/0272-3638.29.5.496
DO - 10.2747/0272-3638.29.5.496
M3 - Article
AN - SCOPUS:48749093189
SN - 0272-3638
VL - 29
SP - 496
EP - 516
JO - Urban Geography
JF - Urban Geography
IS - 5
ER -