TY - JOUR
T1 - A complex potential-variational formulation for thermo-mechanical buckling analysis of flat laminates with an elliptic cutout
AU - Barut, A.
AU - Madenci, E.
PY - 2010/11
Y1 - 2010/11
N2 - A semi-analytical method is developed for pre-buckling and buckling analyses of thin, symmetrically laminated composite panels with an elliptical cutout at an arbitrary location and orientation under general thermo-mechanical loading conditions. Both the pre-buckling and buckling analyses are based on the principle of stationary potential energy utilizing complex potential functions and complete polynomials. The complex potential functions capture the steep stress gradients and local deformations around the cutout, and the " complete" polynomials improve the global buckling response of the laminate. The complex potential functions in the pre-buckling state automatically satisfy the in-plane equilibrium equations, thus reducing the first variation of the total potential energy in terms of line integrals only. Because the complex potential functions for out-of-plane displacements are augmented by the " complete" polynomials, the area integral terms in the second variation of the total potential energy, referred to as the Treftz criterion, are retained in the buckling analysis. The kinematic boundary conditions are idealized by employing extensional and rotational springs (elastic restraints) with appropriate stiffness values. Based on the numerous validation problems, this analysis is proven credible for predicting the buckling load of rectangular and non-rectangular panels with a cutout.
AB - A semi-analytical method is developed for pre-buckling and buckling analyses of thin, symmetrically laminated composite panels with an elliptical cutout at an arbitrary location and orientation under general thermo-mechanical loading conditions. Both the pre-buckling and buckling analyses are based on the principle of stationary potential energy utilizing complex potential functions and complete polynomials. The complex potential functions capture the steep stress gradients and local deformations around the cutout, and the " complete" polynomials improve the global buckling response of the laminate. The complex potential functions in the pre-buckling state automatically satisfy the in-plane equilibrium equations, thus reducing the first variation of the total potential energy in terms of line integrals only. Because the complex potential functions for out-of-plane displacements are augmented by the " complete" polynomials, the area integral terms in the second variation of the total potential energy, referred to as the Treftz criterion, are retained in the buckling analysis. The kinematic boundary conditions are idealized by employing extensional and rotational springs (elastic restraints) with appropriate stiffness values. Based on the numerous validation problems, this analysis is proven credible for predicting the buckling load of rectangular and non-rectangular panels with a cutout.
KW - Cutout
KW - Flat plates
KW - Thermo-mechanical buckling
UR - http://www.scopus.com/inward/record.url?scp=77954142617&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954142617&partnerID=8YFLogxK
U2 - 10.1016/j.compstruct.2010.04.013
DO - 10.1016/j.compstruct.2010.04.013
M3 - Article
AN - SCOPUS:77954142617
SN - 0263-8223
VL - 92
SP - 2871
EP - 2884
JO - Composite Structures
JF - Composite Structures
IS - 12
ER -