A Comparison of Strategies for Source-Free Domain Adaptation

Xin Su, Yiyun Zhao, Steven Bethard

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Data sharing restrictions are common in NLP, especially in the clinical domain, but there is limited research on adapting models to new domains without access to the original training data, a setting known as source-free domain adaptation. We take algorithms that traditionally assume access to the source-domain training data-active learning, self-training, and data augmentation-and adapt them for source-free domain adaptation. Then we systematically compare these different strategies across multiple tasks and domains. We find that active learning yields consistent gains across all SemEval 2021 Task 10 tasks and domains, but though the shared task saw successful self-trained and data augmented models, our systematic comparison finds these strategies to be unreliable for source-free domain adaptation.

Original languageEnglish (US)
Title of host publicationACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
EditorsSmaranda Muresan, Preslav Nakov, Aline Villavicencio
PublisherAssociation for Computational Linguistics (ACL)
Pages8352-8367
Number of pages16
ISBN (Electronic)9781955917216
StatePublished - 2022
Event60th Annual Meeting of the Association for Computational Linguistics, ACL 2022 - Dublin, Ireland
Duration: May 22 2022May 27 2022

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
Country/TerritoryIreland
CityDublin
Period5/22/225/27/22

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'A Comparison of Strategies for Source-Free Domain Adaptation'. Together they form a unique fingerprint.

Cite this