A comparative assessment for algal biodiesel production in the Philippines

Aristotle T. Ubando, Ivan Henderson V. Gue, Alvin B. Culaba, Joel L. Cuello

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Fossil fuels account for more than three-fourths of today's global energy consumption. The combustion of these fuels has contributed to the worsening of climate change and global warming. Fossil fuels are not only detrimental to the environment, but they are also not sustainable. In the Philippines, the country is heavily dependent on fossil fuels, as 40% of its energy consumption comes from oil with the majority being diesel fuel. The country must find a solution to reduce its dependency on fossil fuels. An alternative solution are biofuels, because of its reduced carbon emissions compared to fossil fuels while acting as a substitute for fuel. Biofuels production in the Philippines has already been mandated by the Biofuels Act of 2006 resulting to a mandated utilization of biofuels. The recent typhoons parasite infestation in the country has led to the decreased production of biodiesel. Microalgae is then eyed as a potential feedstock for biodiesel production, because of its high oil yield per hectare and fast growth rate. An assessment of the production of algal biofuel is needed in determining the viability of algal biodiesel production in the Philippines. This study, therefore, proposes the use of the life cycle assessment (LCA) methodology as an assessment tool for the viability of the production of algal biofuel in the Philippines. This study focuses on the assessment of a cultivation system in the Philippine for biodiesel production. An Environmental Design of Industrial Products (EDIP) impact category is used for impact assessments. A previous study was already done in comparing the cultivation system with that of another algal cultivation system, however, there has not yet been a comparative study between the use of this cultivation system and with that of jatropha biodiesel production, one of the prospects for biodiesel production. Results show that the algal cultivation system has scored larger impacts due to its electricity consumptions. The fertilizer consumption of the algal cultivation system, however, shows promising results as it was able to achieve a lower impact score in certain categories.

Original languageEnglish (US)
Title of host publicationIHTC 2017 - IEEE Canada International Humanitarian Technology Conference 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages149-153
Number of pages5
ISBN (Electronic)9781509062645
DOIs
StatePublished - Oct 4 2017
Externally publishedYes
Event3rd IEEE Canada International Humanitarian Technology Conference, IHTC 2017 - Toronto, Canada
Duration: Jul 20 2017Jul 21 2017

Publication series

NameIHTC 2017 - IEEE Canada International Humanitarian Technology Conference 2017

Other

Other3rd IEEE Canada International Humanitarian Technology Conference, IHTC 2017
Country/TerritoryCanada
CityToronto
Period7/20/177/21/17

Keywords

  • biofuels
  • clean energy
  • life cycle assessment
  • microalgae
  • renewable fuels

ASJC Scopus subject areas

  • Health(social science)
  • Safety Research
  • Management of Technology and Innovation
  • Computer Science Applications
  • Renewable Energy, Sustainability and the Environment
  • Development

Fingerprint

Dive into the research topics of 'A comparative assessment for algal biodiesel production in the Philippines'. Together they form a unique fingerprint.

Cite this