A compact high-precision periodic-error-free heterodyne interferometer

Ki Nam Joo, Erin Clark, Yanqi Zhang, Jonathan D. Ellis, Felipe Guzman

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

We present the design, bench-top setup, and experimental results of a compact heterodyne interferometer that achieves picometer-level displacement sensitivities in air over frequencies above 100 MHz. The optical configuration with spatially separated beams prevents frequency and polarization mixing, and therefore eliminates periodic errors. The interferometer is designed to maximize common-mode optical laser beam paths to obtain high rejection of environmental disturbances, such as temperature fluctuations and acoustics. The results of our experiments demonstrate the short- and long-term stabilities of the system during stationary and dynamic measurements. In addition, we provide measurements that compare our interferometer prototype with a commercial system, verifying our higher sensitivity of 3 pm, higher thermal stability by a factor of two, and periodic-error-free performance.

Original languageEnglish (US)
Pages (from-to)B11-B18
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume37
Issue number9
DOIs
StatePublished - Sep 2020

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'A compact high-precision periodic-error-free heterodyne interferometer'. Together they form a unique fingerprint.

Cite this