TY - JOUR
T1 - A Closer Look at Two of the Most Luminous Quasars in the Universe
AU - Schindler, Jan Torge
AU - Fan, Xiaohui
AU - Novak, Mladen
AU - Venemans, Bram
AU - Walter, Fabian
AU - Wang, Feige
AU - Yang, Jinyi
AU - Yue, Minghao
AU - Bañados, Eduardo
AU - Huang, Yun Hsin
N1 - Publisher Copyright:
© 2020. The American Astronomical Society. All rights reserved.
PY - 2020/12/29
Y1 - 2020/12/29
N2 - Ultraluminous quasars (M 1450 ≤ -29) provide us with a rare view into the nature of the most massive and most rapidly accreting supermassive black holes (SMBHs). Following the discovery of two of these extreme sources, J0341+1720 (M 1450 = -29.56, z = 3.71) and J2125-1719 (M 1450 = -29.39, z = 3.90), in the Extremely Luminous Quasar Survey (ELQS) and its extension to the Pan-STARRS 1 footprint (PS-ELQS), we herein present an analysis of their rest-frame UV to optical spectroscopy. Both quasars harbor very massive SMBHs with M BH =6.73 - 0.83+0.75 × 10 9, M ⊙ and M BH = 5.45 -0.55 +0.60 × 10 9, M ⊙, respectively, showing evidence of accretion above the Eddington limit ( and ). NOEMA 3 millimeter observations of J0341+1720 reveal a highly star-forming (SFR ≈ 1500 M o˙ yr-1), ultraluminous infrared galaxy (L IR ≈ 1.0 1013 L o˙) host, which, based on an estimate of its dynamical mass, is only ∼30 times more massive than the SMBH it harbors at its center. As examples of luminous super-Eddington accretion, these two quasars provide support for theories that explain the existence of billion solar mass SMBHs ∼700 million years after the Big Bang by moderate super-Eddington growth from standard SMBH seeds.
AB - Ultraluminous quasars (M 1450 ≤ -29) provide us with a rare view into the nature of the most massive and most rapidly accreting supermassive black holes (SMBHs). Following the discovery of two of these extreme sources, J0341+1720 (M 1450 = -29.56, z = 3.71) and J2125-1719 (M 1450 = -29.39, z = 3.90), in the Extremely Luminous Quasar Survey (ELQS) and its extension to the Pan-STARRS 1 footprint (PS-ELQS), we herein present an analysis of their rest-frame UV to optical spectroscopy. Both quasars harbor very massive SMBHs with M BH =6.73 - 0.83+0.75 × 10 9, M ⊙ and M BH = 5.45 -0.55 +0.60 × 10 9, M ⊙, respectively, showing evidence of accretion above the Eddington limit ( and ). NOEMA 3 millimeter observations of J0341+1720 reveal a highly star-forming (SFR ≈ 1500 M o˙ yr-1), ultraluminous infrared galaxy (L IR ≈ 1.0 1013 L o˙) host, which, based on an estimate of its dynamical mass, is only ∼30 times more massive than the SMBH it harbors at its center. As examples of luminous super-Eddington accretion, these two quasars provide support for theories that explain the existence of billion solar mass SMBHs ∼700 million years after the Big Bang by moderate super-Eddington growth from standard SMBH seeds.
UR - http://www.scopus.com/inward/record.url?scp=85099109730&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099109730&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/abc554
DO - 10.3847/1538-4357/abc554
M3 - Article
AN - SCOPUS:85099109730
SN - 0004-637X
VL - 906
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 12
ER -