TY - JOUR
T1 - A Bright Ultraviolet Excess in the Transitional 02es-like Type Ia Supernova 2019yvq
AU - Burke, J.
AU - Howell, D. A.
AU - Sarbadhicary, S. K.
AU - Sand, D. J.
AU - Amaro, R. C.
AU - Hiramatsu, D.
AU - McCully, C.
AU - Pellegrino, C.
AU - Andrews, J. E.
AU - Brown, P. J.
AU - Itagaki, Koichi
AU - Shahbandeh, M.
AU - Bostroem, K. A.
AU - Chomiuk, L.
AU - Hsiao, E. Y.
AU - Smith, Nathan
AU - Valenti, S.
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved..
PY - 2021/10/1
Y1 - 2021/10/1
N2 - We present photometric and spectroscopic observations of the nearby Type Ia SN 2019yvq, from its discovery ∼1 day after explosion to ∼100 days after its peak brightness. This SN exhibits several unusual features, most notably an extremely bright UV excess seen within ∼5 days of its explosion. As seen in Swift UV data, this early excess outshines its "peak"brightness, making this object more extreme than other supernovae (SNe) with early UV/blue excesses (e.g., iPTF14atg and SN 2017cbv). In addition, it was underluminous M B = -18.4, relatively quickly declining (Δm 15(B) = 1.37), and shows red colors past its early blue bump. Unusual (although not unprecedented) spectral features include extremely broad-lined and high-velocity Si absorption. Despite obvious differences in peak spectra, we classify SN 2019yvq as a transitional member of the 02es-like subclass due to its similarities in several respects (e.g., color, peak luminosity, peak Ti, and nebular [Ca ii]). We model this data set with a variety of published models, including SN ejecta-companion shock interaction and sub-Chandrasekhar-mass white dwarf (WD) double-detonation models. Radio constraints from the VLA place an upper limit of (4.5-20) 10-8 M o˙ yr-1 on the mass-loss rate from a symbiotic progenitor, which does not exclude a red giant or main-sequence companion. Ultimately, we find that no one model can accurately replicate all aspects of the data set, and further we find that the ubiquity of early excesses in 02es-like SNe Ia requires a progenitor system that is capable of producing isotropic UV flux, ruling out some models for this class of objects.
AB - We present photometric and spectroscopic observations of the nearby Type Ia SN 2019yvq, from its discovery ∼1 day after explosion to ∼100 days after its peak brightness. This SN exhibits several unusual features, most notably an extremely bright UV excess seen within ∼5 days of its explosion. As seen in Swift UV data, this early excess outshines its "peak"brightness, making this object more extreme than other supernovae (SNe) with early UV/blue excesses (e.g., iPTF14atg and SN 2017cbv). In addition, it was underluminous M B = -18.4, relatively quickly declining (Δm 15(B) = 1.37), and shows red colors past its early blue bump. Unusual (although not unprecedented) spectral features include extremely broad-lined and high-velocity Si absorption. Despite obvious differences in peak spectra, we classify SN 2019yvq as a transitional member of the 02es-like subclass due to its similarities in several respects (e.g., color, peak luminosity, peak Ti, and nebular [Ca ii]). We model this data set with a variety of published models, including SN ejecta-companion shock interaction and sub-Chandrasekhar-mass white dwarf (WD) double-detonation models. Radio constraints from the VLA place an upper limit of (4.5-20) 10-8 M o˙ yr-1 on the mass-loss rate from a symbiotic progenitor, which does not exclude a red giant or main-sequence companion. Ultimately, we find that no one model can accurately replicate all aspects of the data set, and further we find that the ubiquity of early excesses in 02es-like SNe Ia requires a progenitor system that is capable of producing isotropic UV flux, ruling out some models for this class of objects.
UR - http://www.scopus.com/inward/record.url?scp=85117078876&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85117078876&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac126b
DO - 10.3847/1538-4357/ac126b
M3 - Article
AN - SCOPUS:85117078876
SN - 0004-637X
VL - 919
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 142
ER -