Abstract
Purpose: To enable robust, high spatio-temporal-resolution three-dimensional Cartesian MRI using a scheme incorporating a novel variable density random k-space sampling trajectory allowing flexible and retrospective selection of the temporal footprint with compressed sensing (CS). Methods: A complementary Poisson-disc k-space sampling trajectory was designed to allow view sharing and varying combinations of reduced view sharing with CS from the same prospective acquisition. These schemes were used for two-point Dixon-based dynamic contrast-enhanced MRI (DCE-MRI) of the breast and abdomen. Results were validated in vivo with a novel approach using variable-flip-angle data, which was retrospectively accelerated using the same methods but offered a ground truth. Results: In breast DCE-MRI, the temporal footprint could be reduced 2.3-fold retrospectively without introducing noticeable artifacts, improving depiction of rapidly enhancing lesions. Further, experiments with variable-flip-angle data showed that reducing view sharing improved accuracy in reconstruction and T1 mapping. In abdominal MRI, 2.3-fold and 3.6-fold reductions in temporal footprint allowed reduced motion artifacts. Conclusion: The complementary-Poisson-disc k-space sampling trajectory allowed a retrospective spatiotemporal resolution tradeoff using CS and view sharing, imparting robustness to motion and contrast enhancement. The technique was also validated using a novel approach of fully acquired variable-flip-angle acquisition. Magn Reson Med 77:1774–1785, 2017.
Original language | English (US) |
---|---|
Pages (from-to) | 1774-1785 |
Number of pages | 12 |
Journal | Magnetic Resonance in Medicine |
Volume | 77 |
Issue number | 5 |
DOIs | |
State | Published - May 2017 |
Externally published | Yes |
Keywords
- compressed sensing
- dynamic contrast-enhanced MRI
- view sharing
ASJC Scopus subject areas
- Radiology Nuclear Medicine and imaging