Abstract
A plasmonic modulator is a device that controls the amplitude or phase of propagating plasmons. In a pure plasmonic modulator, the presence or absence of a plasmonic pump wave controls the amplitude of a plasmonic probe wave through a channel. This control has to be mediated by an interaction between disparate plasmonic waves, typically requiring the integration of a nonlinear material. In this work, we demonstrate a 2D semiconductor nonlinear plasmonic modulator based on a WSe2 monolayer integrated on top of a lithographically defined metallic waveguide. We utilize the strong interaction between the surface plasmon polaritons (SPPs) and excitons in the WSe2 to give a 73 % change in transmission through the device. We demonstrate control of the propagating SPPs using both optical and SPP pumps, realizing a 2D semiconductor nonlinear plasmonic modulator, with an ultrafast response time of 290 fs.
Original language | English (US) |
---|---|
Article number | 3264 |
Journal | Nature communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2019 |
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry, Genetics and Molecular Biology
- General Physics and Astronomy