14-3-3 proteins interact with specific MEK kinases

Gary R. Fanger, Christian Widmann, Amy C. Porter, Sue Sather, Gary L. Johnson, Richard R. Vaillancourt

Research output: Contribution to journalArticlepeer-review

133 Scopus citations

Abstract

MEK (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase) kinases (MEKKs) regulate c-Jun N-terminal kinase and extracellular response kinase pathways. The 14-3-3ζ and 14-3-3ε isoforms were isolated in a two-hybrid screen for proteins interacting with the N- terminal regulatory domain of MEKK3. 14-3-3 proteins bound both the N- terminal regulatory and C-terminal kinase domains of MEKK3. The binding affinity of 14-3-3 for the MEKK3 N terminus was 90 nM, demonstrating a high affinity interaction. 14-3-3 proteins also interacted with MEKK1 and MEKK2, but not MEKK4. Endogenous 14-3-3 protein and MEKK1 and MEKK2 were similarly distributed in the cell, consistent with their in vitro interactions. MEKK1 and 14-3-3 proteins colocalized using two-color digital confocal immunofluorescence. Binding of 14-3-3 proteins mapped to the N-terminal 393 residues of 196-kDa MEKK1. Unlike MEKK2 and MEKK3, the C-terminal kinase domain of MEKK1 demonstrated little or no ability to interact with 14-3-3 proteins. MEKK1, but not MEKK2, -3 or -4, is a caspase-3 substrate that when cleaved releases the kinase domain from the N-terminal regulatory domain. Functionally, caspase-3 cleavage of MEKK1 releases the kinase domain from the N-terminal 14-3-3-binding region, demonstrating that caspases can selectively alter protein kinase interactions with regulatory proteins. With regard to MEKK1, -2 and -3, 14-3-3 proteins do not appear to directly influence activity, but rather function as 'scaffolds' for protein-protein interactions.

Original languageEnglish (US)
Pages (from-to)3476-3483
Number of pages8
JournalJournal of Biological Chemistry
Volume273
Issue number6
DOIs
StatePublished - Feb 6 1998

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of '14-3-3 proteins interact with specific MEK kinases'. Together they form a unique fingerprint.

Cite this