TY - JOUR
T1 - ω-3PUFA supplementation ameliorates adipose tissue inflammation and insulin-stimulated glucose disposal in subjects with obesity
T2 - a potential role for apolipoprotein E
AU - Hernandez, James D.
AU - Li, Ting
AU - Rau, Cassandra M.
AU - LeSuer, William E.
AU - Wang, Panwen
AU - Coletta, Dawn K.
AU - Madura, James A.
AU - Jacobsen, Elizabeth A.
AU - De Filippis, Eleanna
N1 - Funding Information:
Funding EDF received support by Arizona Department of Health Services, Arizona Biomedical Research Commission (ABRC) (ADHS14-00003606), the Katryn H. and Roger Penske Career Development Award in Endocrinology in Honor of Dr. Ian Hay, and Mayo Foundation, KL2 TR002379-02-01 CTSA UL1 TR002377 NCATS/NIH. EAJ received support from NIAID AI132840-01A1 and Mayo Foundation.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2021/6
Y1 - 2021/6
N2 - Background: Long chain omega-3 polyunsaturated fatty acids (ω-3PUFA) supplementation in animal models of diet-induced obesity has consistently shown to improve insulin sensitivity. The same is not always reported in human studies with insulin resistant (IR) subjects with obesity. Objective: We studied whether high-dose ω-3PUFA supplementation for 3 months improves insulin sensitivity and adipose tissue (AT) inflammation in IR subjects with obesity. Methods: Thirteen subjects (BMI = 39.3 ± 1.6 kg/m2) underwent 80 mU/m2·min euglycemic-hyperinsulinemic clamp with subcutaneous (Sc) AT biopsy before and after 3 months of ω-3PUFA (DHA and EPA, 4 g/daily) supplementation. Cytoadipokine plasma profiles were assessed before and after ω-3PUFA. AT-specific inflammatory gene expression was evaluated on Sc fat biopsies. Microarray analysis was performed on the fat biopsies collected during the program. Results: Palmitic and stearic acid plasma levels were significantly reduced (P < 0.05) after ω-3PUFA. Gene expression of pro-inflammatory markers and adipokines were improved after ω-3PUFA (P < 0.05). Systemic inflammation was decreased after ω-3PUFA, as shown by cytokine assessment (P < 0.05). These changes were associated with a 25% increase in insulin-stimulated glucose disposal (4.7 ± 0.6 mg/kg ffm•min vs. 5.9 ± 0.9 mg/kg ffm•min) despite no change in body weight. Microarray analysis identified 53 probe sets significantly altered post- ω-3PUFA, with Apolipoprotein E (APOE) being one of the most upregulated genes. Conclusion: High dose of long chain ω-3PUFA supplementation modulates significant changes in plasma fatty acid profile, AT, and systemic inflammation. These findings are associated with significant improvement of insulin-stimulated glucose disposal. Unbiased microarray analysis of Sc fat biopsy identified APOE as among the most differentially regulated gene after ω-3PUFA supplementation. We speculate that ω-3PUFA increases macrophage-derived APOE mRNA levels with anti-inflammatory properties.
AB - Background: Long chain omega-3 polyunsaturated fatty acids (ω-3PUFA) supplementation in animal models of diet-induced obesity has consistently shown to improve insulin sensitivity. The same is not always reported in human studies with insulin resistant (IR) subjects with obesity. Objective: We studied whether high-dose ω-3PUFA supplementation for 3 months improves insulin sensitivity and adipose tissue (AT) inflammation in IR subjects with obesity. Methods: Thirteen subjects (BMI = 39.3 ± 1.6 kg/m2) underwent 80 mU/m2·min euglycemic-hyperinsulinemic clamp with subcutaneous (Sc) AT biopsy before and after 3 months of ω-3PUFA (DHA and EPA, 4 g/daily) supplementation. Cytoadipokine plasma profiles were assessed before and after ω-3PUFA. AT-specific inflammatory gene expression was evaluated on Sc fat biopsies. Microarray analysis was performed on the fat biopsies collected during the program. Results: Palmitic and stearic acid plasma levels were significantly reduced (P < 0.05) after ω-3PUFA. Gene expression of pro-inflammatory markers and adipokines were improved after ω-3PUFA (P < 0.05). Systemic inflammation was decreased after ω-3PUFA, as shown by cytokine assessment (P < 0.05). These changes were associated with a 25% increase in insulin-stimulated glucose disposal (4.7 ± 0.6 mg/kg ffm•min vs. 5.9 ± 0.9 mg/kg ffm•min) despite no change in body weight. Microarray analysis identified 53 probe sets significantly altered post- ω-3PUFA, with Apolipoprotein E (APOE) being one of the most upregulated genes. Conclusion: High dose of long chain ω-3PUFA supplementation modulates significant changes in plasma fatty acid profile, AT, and systemic inflammation. These findings are associated with significant improvement of insulin-stimulated glucose disposal. Unbiased microarray analysis of Sc fat biopsy identified APOE as among the most differentially regulated gene after ω-3PUFA supplementation. We speculate that ω-3PUFA increases macrophage-derived APOE mRNA levels with anti-inflammatory properties.
UR - http://www.scopus.com/inward/record.url?scp=85103155948&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103155948&partnerID=8YFLogxK
U2 - 10.1038/s41366-021-00801-w
DO - 10.1038/s41366-021-00801-w
M3 - Article
C2 - 33753887
AN - SCOPUS:85103155948
SN - 0307-0565
VL - 45
SP - 1331
EP - 1341
JO - International Journal of Obesity
JF - International Journal of Obesity
IS - 6
ER -