Insulin Stimulated Production Of Nitric Oxide In Vascula

Project: Research project

Grant Details

Description

To understand the relationship between hypertension and insulin resistance we are studying insulin signal transduction pathways related to nitric oxide (NO) production in vascular endothelium. Human forearm blood flow studies suggest that physiological concentrations of insulin cause vasodilation of small vessels via the production of NO in endothelial cells. Furthermore, the degree of insulin sensitivity exhibited for this response is positively correlated with insulin sensitivity for glucose uptake. Thus, insulin resistance may contribute to the pathogenesis of hypertension under some conditions. We used an NO electrode to directly measure NO at nanomolar concentrations to characterize the insulin response of human umbilical vein endothelial cells (HUVEC) in primary culture.
In addition, we developed a novel method for transiently transfecting endothelial cells in primary culture and selecting the transfected cells using a fluorescently activated cell sorter. Recently, we also developed a method to directly visualize NO production in single living cells using an NO-specific fluorescent dye DAF-2. By overexpressing wild-type, constitutively active, or dominant inhibitory forms of various signaling molecules, we have now elucdiated a complete biochemical pathway from the insulin receptor to phosphorylation of IRS-1, leading to binding and activation of PI 3-kinase, activation of PDK-1, phosphorylation and activation of Akt that then directly phosphorylates eNOS resulting in activation of eNOS and increased NO production. Moreover, we have ruled out an important role for Ras in insulin-stimulated proudction of NO. We have also used the NO-specific fluorescent dye DAF-2 to visualize production of NO in single cells and dissect the mechanisms whereby insulin regulates activity of endothelial nitric oxide synthase. We found that insulin stimulates activation of eNOS by a clacium independent mechanism involving phosphorylation of eNOS by Akt.
StatusFinished
Effective start/end date9/30/976/30/03

Funding

  • National Institutes of Health: $354,223.00
  • National Institutes of Health: $2,274.00
  • National Institutes of Health: $110,177.00

ASJC

  • Medicine(all)

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.