Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts

  • Leela E. Rao (Creator)
  • Edith B. Allen (Creator)
  • Thomas Meixner (Contributor)
  • Thomas Meixner (Creator)

Dataset

Description

Fire risk in deserts is increased by high production of annual forbs and invasive grasses that create a continuous fine fuel bed in the interspaces between shrubs. Interspace production is influenced by water, nitrogen (N) availability, and soil texture, and in some areas N availability is increasing due to anthropogenic N deposition. The DayCent model was used to investigate how production of herbaceous annuals changes along gradients of precipitation, N availability, and soil texture, and to develop risk-based critical N loads. DayCent was parameterized for two vegetation types within Joshua Tree National Park, California, USA: creosote bush (CB) and piñon–juniper (PJ). The model was successfully calibrated in both vegetation types, but validation showed that the model is sensitive to soil clay content. Despite this fact, DayCent (the daily version of the biogeochemical model CENTURY) performed well in predicting the relative response of production to N fertilization and was used to determine estimates of fire risk for these ecosystems. Fire risk, the probability that annual biomass exceeds the fire threshold of 1000 kg/ha, was determined for each vegetation type and began to increase when N deposition increased 0.05 g/m2 above background levels (0.1 g/m2). Critical loads were calculated as the amount of N deposition at the point when fire risk began to increase exponentially. Mean critical loads for all soil types and precipitation
Date made available2016
Publisherfigshare

Cite this