Description
Many animals are active only during a particular time (e.g. day vs. night), a partitioning that may have important consequences for species co-existence. An open question is the extent to which this diel activity niche is evolutionarily conserved or labile. Here, we analyze diel activity data across a phylogeny of 1914 tetrapod species. We find strong phylogenetic signal, showing that closely related species tend to share similar activity patterns. Ancestral reconstructions show that nocturnality was the most likely ancestral diel activity pattern for tetrapods and many major clades within it (e.g. amphibians, mammals). Remarkably, nocturnal activity appears to have been maintained continuously in some lineages for ~350 million years. Thus, we show that traits involved in local-scale resource partitioning can be conserved over strikingly deep evolutionary time scales. We also demonstrate a potentially important (but often overlooked) metric of niche conservatism. Finally, we show that diurnal lineages appear to have faster speciation and diversification rates than nocturnal lineages, which may explain why there are presently more diurnal tetrapod species even though diurnality appears to have evolved more recently. Overall, our results may have implications for studies of community ecology, species richness, and the evolution of diet and communication systems.
Date made available | May 24 2017 |
---|---|
Publisher | Dryad |